首页  >  科研动态  >  正文
科研动态
硕士生涂晔昕的论文在PeerJ 刊出
发布时间:2018-08-29 14:50:35     发布者:易真     浏览次数:

标题:Tea cultivar classification and biochemical parameter estimation from hyperspectral imagery obtained by UAV

作者: Tu, YX (Tu, Yexin); Bian, M (Bian, Meng); Wan YK (Wan, Yinkang); Fei, T* (Fei, Teng)

来源出版物:Peer J  卷 期 DOI10.7717/peerj.4858 出版年: May 2018

摘要:It is generally feasible to classify different species of vegetation based on remotely sensed images, but identification of different sub-species or even cultivars is uncommon. Tea trees (Camellia sinensis L.) have been proven to show great differences in taste and quality between cultivars. We hypothesize that hyperspectral remote sensing would make it possibly to classify cultivars of plants and even to estimate their taste-related biochemical components. In this study, hyperspectral data of the canopies of tea trees were collected by hyperspectral camera mounted on an unmanned aerial vehicle (UAV). Tea cultivars were classified according to the spectral characteristics of the tea canopies. Furthermore, two major components influencing the taste of tea, tea polyphenols (TP) and amino acids (AA), were predicted. The results showed that the overall accuracy of tea cultivar classification achieved by support vector machine is higher than 95% with proper spectral pre-processing method. The best results to predict the TP and AA were achieved by partial least squares regression with standard normal variant normalized spectra, and the ratio of TP to AA—which is one proven index for tea taste—achieved the highest accuracy (RCV = 0.66, RMSECV = 13.27) followed by AA (RCV = 0.62, RMSECV = 1.16) and TP (RCV = 0.58, RMSECV = 10.01). The results indicated that classification of tea cultivars using the hyperspectral remote sensing from UAV was successful, and there is a potential to map the taste-related chemical components in tea plantations from UAV platform; however, further exploration is needed to increase the accuracy.

入藏号

文献类型:Article

语种:English

关键词: Hyperspectral remote sensing; Unmanned aerial vehicle; Cultivar classification; Biochemical parameter estimation; Tea quality

通讯作者地址:

Fei, T (reprint author), School of Resource and Environmental Science, Wuhan University, Wuhan, China.

Fei, T (reprint author), Suzhou Institute, Wuhan University, Suzhou, China.

电子邮件地址: feiteng@whu.edu.cn

地址:

[Tu, Yexin; Wan, Yinkang; Fei, Teng] School of Resource and Environmental Science, Wuhan University, Wuhan, China.

[Bian, Meng] School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China.

影响因子:2.2

全文链接:https://peerj.com/articles/4858/#related-research


信息服务
学院网站教师登录 学院办公电话 学校信息门户登录

版权所有 © 武汉大学资源与环境科学学院
地址:湖北省武汉市珞喻路129号 邮编:430079 
电话:027-68778381,68778284,68778296 传真:027-68778893     技术支持:尚网互联