标题: Low-Temperature Assembly of Ultrathin Amorphous MnO2 Nanosheets over Fe2O3 Spindles for Enhanced Lithium Storage
作者:Zeng, C (Zeng, Chen); Weng, W (Weng, Wei); Lv, T (Lv, Teng); Xiao, W (Xiao, Wei) 来源出版物:ACS APPLIED MATERIALS & INTERFACES 卷:10 期:36 页码: 30470-30478 DOI:10.1021/acsami.8b11794 出版年: SEP 12 2018
摘要: Carbon coating is an effective method to enhance the lithium storage of metal oxides, which, however, suffers from harsh conditions in high-temperature hydrolysis of organic mass at inert atmosphere and compromised capacity due to the presence of low capacity carbon. We herein report a direct assembly of ultrathin amorphous MnO2 nanosheets with thickness less than 3 nm over Fe2O3 nanospindle backbones at 95 degrees C as a mild-condition, short process, and upscalable alternative to the classic carbon-coating method. The assembly of the amorphous MnO2 nanosheets significantly increases the electrical conductivity of Fe2O3 nano spindles. When evaluated as an anode for lithium-ion batteries, the Fe2O3@amorphous MnO2 electrode shows enhanced capacity retention compared to that of the Fe2O3 nanospindle electrode. In situ transmission electron microscopy and in situ X-ray diffraction observations of the electrochemically driven lithiation/delithiation of the Fe2O3@amorphous MnO2 electrode indicate that the assembled amorphous MnO2 nanosheets are in situ transformed into a Fe-Mn-O protection layer for better electrical conductivity, uncompromised Li+ penetration, and enhanced structural integration. The Fe2O3@amorphous MnO2 electrode therefore has a reversible capacity of 555 mAh g(-1) after 100 galvanostatic charge/discharge cycles at 1000 mA g(-1), comparable with that of the Fe3O4@C electrode derived via the classic carbon-coating route.
入藏号:WOS:000444793000051
文献类型:Article
语种:English
作者关键词: lithium-ion battery; anode; Fe2O3; MnO2; in situ transmission electron microscope; in situ X-ray diffraction
通讯作者地址:Xiao, W (reprint author), Wuhan Univ, Hubei Int Sci & Technol Cooperat Base Sustainable, Sch Resource & Environm Sci, Wuhan 430072, Hubei, Peoples R China.
电子邮件地址:gabrielxiao@whu.edu.cn
地址: [Zeng, Chen; Weng, Wei; Lv, Teng; Xiao, Wei] Wuhan Univ, Hubei Int Sci & Technol Cooperat Base Sustainable, Sch Resource & Environm Sci, Wuhan 430072, Hubei, Peoples R China.
影响因子:8.097
版权所有 © 武汉大学资源与环境科学学院
地址:湖北省武汉市珞喻路129号 邮编:430079
电话:027-68778381,68778284,68778296 传真:027-68778893 邮箱:sres@whu.edu.cn