首页  >  科研动态  >  正文
科研动态
张晖实验室林恒的文章在CHEMICAL ENGINEERING JOURNAL 刊出
发布时间:2019-03-07 10:04:07     发布者:易真     浏览次数:

标题:Degradation of bisphenol A by activating peroxymonosulfate with Mn0.6Zn0.4Fe2O4 fabricated from spent Zn-Mn alkaline batteries

作者: Lin, H (Lin, Heng); Li, SM (Li, Simiao); Deng, B (Deng, Bin); Tan, WH (Tan, Weihua); Li, RM (Li, Ruimeng); Xu, Y (Xu, Yin); Zhang, H (Zhang, Hui)

来源出版物:CHEMICAL ENGINEERING JOURNAL 卷:364 页码:541-551 DOI10.1016/j.cej.2019.01.189 出版年:MAY 15 2019

摘要: Spinel ferrites have shown great potential to activate peroxides for environmental remediation. In this work, a Mn-Zn ferrite catalyst was fabricated by the citrate combustion method from spent Zn-Mn alkaline batteries. The synthesized Mn0.6Zn0.4Fe2O4 catalysts were applied to activate peroxomonosulfate (PMS) and degrade bisphenol A (BPA) in water. A 95.8% BPA (0.1 mM) removal was achieved at initial pH of 6.2, Mn0.6Zn0.4Fe2O4 dosage of 0.2 g/L, PMS concentration of 0.5 mM, and reaction time of 60 min. The concentration of metal leaching and radical identification experiments suggested that BPA is mainly degraded by surface-adsorbed reactive radicals. Metals at A site of the spinel (AFe(2)O(4), A = Mn and Zn) were responsible for PMS activation and Fe(III) acted as the reservoir for the surface hydroxyl groups, which substantially accelerated the degradation of BPA. The addition of Cl- improved the destruction of BPA and a NaHCO3 concentration below 5 mM had a negligible effect on the BPA removal. When the PMS/Mn0.6Zn0.4Fe2O4 process was used to treat real river water spiked with BPA, the removal of BPA was much faster than that in deionized water. This implied that the PMS/Mn0.6Zn0.4Fe2O4 process may provide some new insights not only for the recycling of spent batteries, but also for removal of contaminants from wastewater.

入藏号:WOS:000458504800053

文献类型:Article

语种:English

作者关键词:Mn-Zn ferrite; Peroxomonosulfate; Spent Zn-Mn alkaline batteries; Bisphenol A

通讯作者地址:Zhang, H (通讯作者)Wuhan Univ, Hubei Environm Remediat Mat Engn Technol Res Ctr, Dept Environm Sci & Engn, Wuhan 430079, Hubei, Peoples R China.

电子邮件地址:eeng@whu.edu.cn

地址:[Lin, Heng; Li, Simiao; Deng, Bin; Tan, Weihua; Li, Ruimeng; Xu, Yin; Zhang, Hui] Wuhan Univ, Hubei Environm Remediat Mat Engn Technol Res Ctr, Dept Environm Sci & Engn, Wuhan 430079, Hubei, Peoples R China.

影响因子:6.735


信息服务
学院网站教师登录 学院办公电话 学校信息门户登录

版权所有 © 武汉大学资源与环境科学学院
地址:湖北省武汉市珞喻路129号 邮编:430079 
电话:027-68778381,68778284,68778296 传真:027-68778893    邮箱:sres@whu.edu.cn