首页  >  科研动态  >  正文
科研动态
张晖实验室博士生陈涵肖在CHEMICAL ENGINEERING JOURNAL发表论文
发布时间:2023-01-04 15:12:56     发布者:易真     浏览次数:

标题: Ultra-facile fabrication of oxygen vacancy-laden catalyst for peroxymonosulfate activation to degrade organic pollutant in water: Performance and mechanism

作者: Chen, HX (Chen, Hanxiao); Han, ZY (Han, Zhaoyi); Cao, SY (Cao, Shiyi); Li, YH (Li, Yinghao); Kang, X (Kang, Xin); Cheng, C (Cheng, Cheng); Chen, XT (Chen, Xuantong); Xu, Y (Xu, Yin); Zhang, H (Zhang, Hui)

来源出版物: CHEMICAL ENGINEERING JOURNAL : 453 文献号: 139660 DOI: 10.1016/j.cej.2022.139660 子辑: 1 出版年: FEB 1 2023

摘要: Oxygen vacancy (OV) defect engineering is high-profile for catalyst intensification, but remains in bench scale due to high cost and complicacy. Herein, for the scale-and performance-oriented defect engineering, a highly predigested mechanochemical paradigm was firstly conceived to convert spent Fe-based foodstuff deoxidizers (SFD) into mechanochemistry-derived catalysts (MSFD) via temporary grinding process. The physicochemical properties of MSFD were systematically characterized along with justifying dual-channel formation of OVs, which involved the actions of mechanical energy and reductive carbon components. With swift cycle of =Fe(II)/ =Fe(III) redox couple assisted by electron-rich OVs, MSFD could efficiently activate peroxymonosulfate (PMS) for contaminant elimination and bacteria inactivation in water. Hybrid mechanisms were further unveiled in which the radicals were predominant for decontamination, while the aqueous high-valent iron-oxo species played the peripheral role. The electron transfer between =Fe and PMS was mediated by the bridging OVs via donor-bridge-acceptor pathway, accounting for the absence of surface high-valent iron-oxo species generated through heterolytic O-O bond cleavage and atom transfer. This work furnishes a generalizable pattern for fabricating cost-effective oxygen-defective materials and profound outlooks into radical and nonradical regimes of persulfate activation.

作者关键词: Contaminants; Deoxidizer; Mechanochemistry; Oxygen vacancy; Peroxymonosulfate

地址: [Chen, Hanxiao; Han, Zhaoyi; Cao, Shiyi; Li, Yinghao; Kang, Xin; Cheng, Cheng; Chen, Xuantong; Zhang, Hui] Wuhan Univ, Sch Resource & Environm Sci, Dept Environm Sci & Engn, Wuhan 430079, Peoples R China.

[Xu, Yin] Hubei Univ, Sch Resources & Environm Sci, Wuhan 430062, Peoples R China.

通讯作者地址: Zhang, H (通讯作者)Wuhan Univ, Sch Resource & Environm Sci, Dept Environm Sci & Engn, Wuhan 430079, Peoples R China.

Xu, Y (通讯作者)Hubei Univ, Sch Resources & Environm Sci, Wuhan 430062, Peoples R China.

电子邮件地址: yxu@hubu.edu.cn; eeng@whu.edu.cn

影响因子:16.744

信息服务
学院网站教师登录 学院办公电话 学校信息门户登录

版权所有 © 武汉大学资源与环境科学学院
地址:湖北省武汉市珞喻路129号 邮编:430079 
电话:027-68778381,68778284,68778296 传真:027-68778893    邮箱:sres@whu.edu.cn